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1.0 SUMMARY

In this report, the effects of incorporating nonlinearities in sequential relative orbit esti-
mation are studied for a chief spacecraft in a circular orbit, assuming either range-only or
angles-only measurement of the deputy from the chief. The relative motion models can be
categorized into four cases: first order Hill-Clohessy-Wiltshire (HCW) equation, second
order, third order and full nonlinear. Observability is studied analytically using Lie deriva-
tives and numerically with the observability index and condition number obtained from
employing an Extended Kalman Filter (EKF). The results highlight the improving benefits
of using higher order nonlinear models.

To explain the behavior of HCW dynamics in an EKF with range-only measurements, a
classification of ambiguous spacecraft relative orbits in sequential orbit estimation is for-
mulated based on continuous range-only measurements. Using relative orbit elements the
ambiguous orbits are categorized into two cases: mirror ambiguous orbits, which conserve
the size and shape but transform the orientation of the true relative orbit, and deformed
ambiguous orbits, which both distort the shape and change the orientation. Furthermore, it
is shown that the inclusion of higher order nonlinearities in the filter model can help resist
the tendency of an EKF to converge to the ambiguous orbits.
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2.0 INTRODUCTION

Relative orbit estimation is desirable for many types of spacecraft missions, such as for-
mation control and rendezvous. Performing spacecraft maneuvers based only on on-board
measurements reduces the total operating cost, and improves safety against communica-
tion interruptions with ground stations. Relative navigation between spacecraft in close-
proximity essentially corresponds to space-based orbit determination. In particular, range-
based and vision-based navigation and estimation of relative orbit have received attention
recently, since they have desirable properties of low cost and minimal maintenance.

Several papers have considered relative orbit navigation and estimation from different 
perspectives. The core problem is to determine the relative orbit between a chief spacecraft 
and a deputy spacecraft by certain measurements, assuming that the orbit of the chief is 
prescribed exactly. Huxel and Bishop [1] discussed the effects of using both inertial range 
measurements from tracking stations and relative range measurements among formation 
members in the context of two-body dynamics in the inertial frame. Also using two-body 
inertial dynamics, Yim, et al. [2] numerically studied the observability of relative 
orbit estimation by taking line-of-sight (LOS) measurements with incorporation of J2 
perturba-tion and showed that proper choices of orbital element differences can improve 
estimation performance. Taking LOS measurement only, Woffiden and Geller [3,4] 
discussed relative orbit estimation based on the Hill-Clohessey-Wiltshire dynamic model 
[5,6] and concluded this scenario is unobservable. Using the Lie derivative method, 
Kaufman, et al. [7] showed that with LOS measurement only, the nonlinear relative 
orbital dynamics are observable under certain geometric conditions. Psiaki [8] considered 
relative orbit estimation from the view of orbital element differences and widely discussed 
the improvement of observability by adding J2 perturbation or altering orbital element 
differences. Rundberg and Lovell [9] discussed the initial relative orbit determination using 
minimal number of range-only measurements.

In this report, the effects of including nonlinearities in the filter dynamic model on ob-
servability in relative orbit estimation for unperturbed circular chief orbits are explored.
Four different dynamic models, i.e., first order (HCW), second order, third order and full
nonlinear models are employed in an extended Kalman filter along with two different types
of measurements: range-only and angles-only. The analytical method of Lie derivatives and
the numerical methods of observability index and condition number are applied to analyze
the observability in relative orbit estimation with the four different models listed above.

To explain the appearance of ambiguous trajectories using continuous range-only mea-
surements in an EKF, an analytical analysis of ambiguous conditions is presented using
relative orbital elements. Subsequently, the enumeration and classification of these tra-
jectories is provided both by using Cartesian coordinates and geometric properties of the
relative orbit. The condition of existence for the deformed ambiguous orbit is also shown
through the solution of a fourth order polynomial. Finally, as means to exclude ambigu-
ities, we explore the possibility of using higher order nonlinear models to guarantee the
uniqueness of the estimated orbit.

Approved for public release; distribution is unlimited.
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3.0 METHODS, ASSUMPTIONS, AND PROCEDURES

Consider two satellites orbiting the Earth where each satellite is modeled as a point 
mass. Suppose that a chief spacecraft is on a circular orbit with a pre-determined orbital 
radius rc ∈ R. In fact, there exist several ways to model spacecraft relative motion, for 
example describing the motion of each spacecraft individually in the inertial frame, or 
using a dynamic model of orbital element differences. However, to better visualize the 
relative motion from the view of the chief spacecraft, the relative motion is described in the 
chief Local Vertical Local Horizontal (LVLH) frame in this paper.

A LVLH frame is defined as follows. Its origin is located at the chief satellite. The x-axis
is along the radial direction from the Earth to the chief, and the y-axis is along the velocity
vector of the chief. The z-axis is normal to the orbital plane, and it is parallel to the angular
momentum vector of the chief. The angular velocity of the LVLH frame with respect to
an inertial frame, expressed in LVLH coordinates, is given by ω = [0, 0, n]T ∈ R3, where
n =

√
µ/r3c is the mean motion of the chief satellite, and µ denotes the gravitational

parameter of the Earth. Note the inertial velocity of the chief expressed in the LVLH frame
is given by vc = [0, nrc, 0]T ∈ R3. Let the relative position of a deputy spacecraft with
respect to the chief spacecraft be given by ρ = [x, y, z]T ∈ R3 in the LVLH frame.

3.1 Dynamics of Relative Motion with Different Nonlinearities

In order to describe the dynamics of relative motion concisely, the state space form
Ẋ = F(X) is used, where X = [ρT ρ̇T ]T = [x, y, z, ẋ, ẏ, ż]T ∈ R6 are the position and
velocity states of the deputy relative to the chief in chief’s LVLH frame, and F(X) is the
corresponding vector field. The derivation for dynamic models of different nonlinear orders
are based on truncating a Taylor series expansion of two-body relative orbit dynamics at
different orders.

First order dynamic model. The first order dynamic model (HCW model) only includes
the linear terms from the Taylor expansion in the relative orbit dynamics, and its vector field
is given by

F1(X) =

[
ρ̇
ρ̈

]
=

[
ρ̇

−2ω × ρ̇+ Kρ

]
(1)

where K = diag [ 3n2, 0,−n2 ] is a diagonal matrix.

Second order dynamic model. The second order dynamic model [10] adds second order
terms from the Taylor expansion to the first order model, and its vector field is given by

F2(X) =

[
ρ̇
ρ̈

]
=

[
ρ̇

−2ω × ρ̇+ Kρ+ Γ2

]
(2)

where Γ2 represents 2nd order terms, namely

Γ2 =
µ

r4c

 −3x2 + 3
2
y2 + 3

2
z2

3xy
3xz

 (3)

Approved for public release; distribution is unlimited.
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Third order dynamic model. The third order dynamic model [11] adds third order terms
from the Taylor expansion to the second order dynamic model, and its vector field is given
by

F3(X) =

[
ρ̇
ρ̈

]
=

[
ρ̇

−2ω × ρ̇+ Kρ+ Γ2 + Γ3

]
(4)

where Γ3 represents third order terms

Γ3 =
µ

r5c

 4x3 − 6x(y2 + z2)
−6x2y + 3

2
y3 + 3

2
yz2

−6x2z + 3
2
z3 + 3

2
zy2

 (5)

Full nonlinear dynamic model. The full nonlinear dynamic model is the most accurate
model considered in this paper. The vector field can be expressed as

Ff (X) =

[
ρ̇
ρ̈

]
=

[
ρ̇

−2ω × ρ̇− ω × (ω × rd)− µrd
||rd||3

]
(6)

where rd = [rc + x, y, z]T ∈ R3 is the position vector of the deputy relative to the center of
the Earth in the chief’s LVLH frame.

3.2 Measurements

For the output equation, we assume the chief spacecraft takes relative measurements
towards the deputy of either range-only measurements or angles-only measurements.

Range measurements. Range measurements are represented by the magnitude of the
relative position vector, i.e.,

Y = ρ =
√
x2 + y2 + z2 (7)

Angle measurements. One option to define angle measurements is by using two bearing
angles λ and φ ( shown in Figure 1), namely the measurement

Y =

[
λ
φ

]
(8)

where

φ = asin
z√

x2 + y2 + z2
, φ ∈ [−π

2
,
π

2
]

λ = atan2(y, x), if atan2(y, x) ∈ [0, π]

λ = 2π + atan2(y, x), if atan2(y, x) ∈ (−π, 0) (9)

Approved for public release; distribution is unlimited.
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Figure 1. Measurement Relationship in Chief’s LVLH Frame

Another option is the equivalent LOS measurement, which is the unit-vector in the rela-
tive position direction, i.e.,

Y = ρ̂ =
ρ

‖ρ‖
(10)

It is clear to see that the LOS vector ρ̂ and two bearing angles (λ, φ) are equivalent.

3.3 Analytical Observability Criteria for Nonlinear Systems

Generally, for a nonlinear system given by

ẋ = f(x)

y = h(x)

x(0) = x0 (11)

where x ∈ Rn and y ∈ Rp, the system is observable over the interval [0, T ] if the mapping
from initial state x0 to output profile y(0 : T ) is one to one. It is locally observable over the
interval [0, T ] if this mapping is locally one to one. A widely accepted tool for checking
local observability is the observability rank condition given by Lie derivatives [12,13]. Let
the first order Lie derivative of output h(x) along vector field f(x) be

Lfh(x) =
∂h(x)

∂x
f(x) ∈ Rp×1 (12)

with the nth order Lie derivative defined recursively as

Lnfh(x) =
∂Ln−1f h(x)

∂x
f(x) ∈ Rp×1 (13)

Approved for public release; distribution is unlimited.
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with zero order Lie-derivative L0
fh = h. Define an observability matrix N ∈ Rpn×n as

N(x) =
∂

∂x


L0
fh(x)

L1
fh(x)

...
Ln−1f h(x)

 (14)

It has been shown that the system is locally observable at x if the rank of the observabil-
ity matrix satisfies rank N(x) = n. When applied to linear dynamics, this yields the
well-known observability rank condition for linear systems. Note that when there is more
than a single measurement type, i.e., p > 1, it is possible to satisfy the observability rank
condition without need for computing the higher-order Lie derivatives up to the (n − 1)th
order. Moreover, it is usually difficult to check higher order rows in N(x), and the practical
choice is to stop when N(x0) has more rows than columns, or at least when N(x) is a
square matrix. For this reason, the Lie derivative method can only guarantee observability
if the first n rows in matrix N(x) are non-singular, but the method cannot guarantee the
unobservability of the nonlinear system.

3.4 Numerical Observability Measure of Nonlinear Systems

The observability rank condition essentially determines whether the system is locally
observable over a short period of time in the vicinity of the time at which the observability
rank is computed, but it does not tell us how easy it is to observe the system. To overcome
this problem, the observability Gramian and some related quantities are introduced.

The observability Gramian measures the sensitivity of the output with respect to the ini-
tial condition. For a continuous nonlinear system as in Eq. (11), the observability Gramian
is defined as [14]:

Wc(x0, t0, tf ) =

∫ tf

t0

(
∂y(τ)

∂x0

)T
∂y(τ)

∂x0
dτ (15)

Corresponding to this definition, the observability Gramian for discrete time systems is
defined as:

Wd(X0, ti, tf ) =
N∑
i=0

ΦT (i, 0)HT
i HiΦ(i, 0) (16)

where N is the number of measurement times, Φ(i, 0) is the state transition matrix from
time t = t0 to time t = ti satisfying Φ̇(t) = ∂f(x)

∂x
Φ(t), and H = ∂y

∂x
is the Jacobian matrix

for measurement relationship. It turns out that the observability of a system is deeply
related to the eigenvalues and singular values of the observability Gramian, with which
a wide variety of different measures have been proposed. Two of most commonly used
measures are introduced here.
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Waldraff, et al. [15] outlined the observability index (OI), which is defined as the small-
est singular value of the observability Gramian Wd, i.e.,

OI = min σ(Wd) (17)

where σ denotes singular value of a matrix. They also discussed that if OI is small, then
observation noises can have a large impact on the estimation error. In other words, a larger
OI indicates better observability.

Dochain, et al. [16] made use of the estimation condition number (CN) for the ob-
servability analysis, which is defined as the ratio of largest singular value to the smallest 
singular value of the observability Gramian Wd, i.e.,

CN =
max σ(Wd)

min σ(Wd)
(18)

If CN is large then the effect on the output caused by a small change in the initial condition
in one direction can swamp the effect on the output of a change in another direction. In
other words the estimation problem is ill-conditioned near states with large local estimation
condition number.

Approved for public release; distribution is unlimited.
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4.0 OBSERVABILITY ANALYSIS FOR RELATIVE MOTION WITH LOS MEA-
SUREMENTS

As discussed in the Introduction, Reference [7] applied the Lie derivative method on the
full nonlinear dynamic model, resulting in observability conditions for LOS measurements.
This paper extends this work to three other dynamic models and discusses observability
conditions for each one of them. The general logic is shown as follows:

Consider a general form of vector field F

F(X) =

[
ρ̇
ρ̈

]
=

[
ρ̇

−2ω × ρ̇+ . . .

]
(19)

For the relative motion models with different orders of nonlinearities, F can be replaced by
F1, F2, F3 or Ff , and the LOS measurement Y can be expressed as

Y = ρ̂ =
ρ

||ρ||
(20)

With certain order of vector field F and LOS measurement Y, we can derive the first three
rows of N by

N3 =


∂ρ̂
∂ρ

∂ρ̂
∂ρ̇

∂ ˙̂ρ
∂ρ

∂ ˙̂ρ
∂ρ̇

∂ ¨̂ρ
∂ρ

∂ ¨̂ρ
∂ρ̇

 (21)

The key to observability analysis is to find the conditions that guarantee the full rank of the
N3 matrix. However, the process of deriving the full rank condition for N3 is complicated
and therefore not shown here. Readers may refer to Reference [7] to have a better under-
standing. Instead, we extend the observability conditions to relative motion models with
different orders of nonlinearities.

Observability conditions for first order model. The observability problem with linear
dynamics based on LOS measurements has been widely discussed. Most notably, Woffiden
and Geller [3] have proved that based on linear dynamics of the HCW model, the system
is unobservable by taking angles-only measurements. In this paper, by substituting vector
field F1 into Eq. (21), we find that the N3 matrix loses full rank for linear dynamics,
meaning that the Lie derivative analysis also implies the unobservability of linear dynamics
with angles-only measurements.

Observability conditions for second order model. Substituting vector field F2 in Eq. (3)
into Eq. (21), the resulting observable conditions are obtained as:

(i) when ρ× ρ̇ = 0, Γ2 ∦ ρ̂ and ρT (Γ2 × (ω × ρ)) 6= 0

(ii) when ρ× ρ̇ 6= 0, Γ2 ∦ ρ̂ and ρT (Γ2 × vrel) 6= 0 (22)

where vrel = ρ̇+ ω × ρ is the velocity vector of deputy relative to chief.
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Observability conditions for third order model. Substituting vector field F3 in Eq. (4)
into Eq. (21), the resulting observable conditions are obtained as:

(i) when ρ× ρ̇ = 0, (Γ2 + 2Γ3) ∦ ρ̂ and ρT ((Γ2 + 2Γ3)× (ω × ρ)) 6= 0

(ii) when ρ× ρ̇ 6= 0, (Γ2 + 2Γ3) ∦ ρ̂ and ρT ((Γ2 + 2Γ3)× vrel) 6= 0 (23)

Observability conditions for full nonlinear model. Substituting vector field Ff in Eq.
(6) into Eq. (21), the resulting observable conditions are obtained as:

(i) when ρ× ρ̇ = 0, af ∦ ρ̂ and ρT (af × (ω × ρ)) 6= 0

(ii) when ρ× ρ̇ 6= 0, af ∦ ρ̂ and ρT (af × vrel) 6= 0 (24)

where af can be expressed as

af = ω × (ω × rc) +
µrc
r3d

+
3µrdr

T
d

r5d
ρ (25)

It is noted that even if Eq. (22), (23) or (24) is violated, it only implies that the correspond-
ing order of dynamic model is unobservable at that specific time epoch and does not mean
the whole measurement profile can not result in an observable system. In other words,
when the observable conditions are violated at a certain time epoch, the LOS measure-
ments make little or no contribution on improving the observability. On the contrary, for
linear dynamics, Woffiden and Geller [3] have drawn a decisive conclusion that the system
is unobservable with LOS measurements regardless of the number of measurements being
taken.
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5.0 NUMERICAL RESULTS FOR OBSERVABILITY ANALYSIS OF RELATIVE
MOTION

We choose one primary scenario of relative motion between chief and deputy orbits
shown in Table 1. Note that the orbital elements difference are chosen such that the scales
of relative motion on three directions of chief’s LVLH frame are comparable as shown in
Figure 2.

Table 1. Orbital Element Differences for Primary Simulation Case
a (km) e i Ω ω M0

Chief 7100 0 0◦ 0◦ 0◦ 0◦

Deputy 7100 0.005 0.3◦ 0◦ 0◦ 0.1◦
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Figure 2. The True Relative Orbit in Chief’s LVLH Frame with 3-D Projections

Furthermore, we evaluate the observability measure for different order of nonlinearities
based on local observability Gramian and process range-only and angles-only measure-
ments with the EKF, using the full nonlinear model as the truth model.

For both range-only and angles-only measurements, the initial state deviation for EKF is

δX0 = [1000,−1000, 1000, 1, 1,−1](m,m/s) (26)

and the initial covariance of the state is chosen as

P0 = diag [1.8× 107, 1.8× 107, 1.8× 107, 18, 18, 18](m2,m2/s2) (27)
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The sample time is ∆t = 10 seconds. For range-only measurements, the measurement
covariance matrix is assumed to be R = 202 m2 . For angles-only measurements, R =
diag [ 2.7416 × 10−7, 2.7416 × 10−7 ] rad2, which corresponds to the variances of two
bearing angles σλ = σφ = 0.03◦. Since different orders of nonlinearities will be considered,
different levels of process noise will be applied to different dynamical models separately.

5.1 Results for Four Models with Different Nonlinearities

Figure 3 illustrates the simulation results for the EKF based on the four different rela-
tive motion models with range-only measurements, in which the red line denotes the true
relative orbit and the blue line denotes the estimated orbit. From Figure 3(a), it is clear
that the Kalman filter based on the HCW model cannot estimate the true states effectively
and manifests the inability to distinguish between two orbits with the same range informa-
tion. In Figure 3(b), using the second order dynamic model, the filter successfully captures
the motion of true relative orbit, even though its accuracy may not be satisfactory at the
beginning. In Figure 3(c), with a dynamic model truncated at third order, the estimated
relative orbit very closely follows the true relative orbit. In fact, it is surprising that the
estimated results in (c) are almost as good as the results in (d). This indicates that a third
order model is required to accurately characterize the relative motion for this particular
case. It is expected that for cases where the chief and deputy are closer together, the results
utilizing a second order model may be more similar to those obtained with a third order or
full nonlinear model.

Table 2 summarizes the performance of the EKF with different nonlinearities for range-
only measurements. OI and CN are the observability index and condition number of the 
observability Gramian. eρ indicates the estimation position error root mean square (RMS) 
and is defined as

eρ =

√√√√ 1

N

N∑
k=0

‖(ρ̂k − ρk)‖2 (28)

where ρ̂k = [x̂k, ŷk, ẑk]
T is the kth estimated relative position vector and ρk is the kth true

relative position vector. eρ̇ denotes the estimation velocity error, i.e.,

eρ̇ =

√√√√ 1

N

N∑
k=0

‖(ˆ̇ρk − ρ̇k)‖2 (29)

where ˆ̇ρk = [ˆ̇xk, ˆ̇yk, ˆ̇zk]
T .

Table 2. Performance of EKF Based on Range-only Measurements

OI CN eρ (m) eρ̇ (m/s) λmax(P) det(P)
1st 1.89× 10−15 2.93× 1016 5.15× 104 54.20 2.36× 103 6.00× 10−4

2nd 1.61× 10−12 1.38× 1013 1.11× 102 0.62 4.73× 102 6.16× 10−9

3rd 1.33× 10−9 3.78× 1010 23.26 0.064 8.63 2.41× 10−19

full 1.63× 10−9 3.43× 1010 21.83 0.052 7.62 5.23× 10−20

Approved for public release; distribution is unlimited.

11



In Table 2, λmax(P ) is the maximum eigenvalue of covariance matrix P . It indicates
the variance of worst estimated state among all the six states. det(P) is the determinant
of matrix P , which can be interpreted as the overall performance of EKF since det(P) =
λ1λ2 . . . λ6 is the product of the variances of the six states.

From the first two columns of Table 2, OI increases and CN decreases drastically from
first order to second order and second order to third order dynamic models. However,
changing from third order model to full nonlinear model, OI and CN only differ slightly.
It is noted that all the other parameters, eρ, eρ̇, λmax(P ) and det(P) all follow the same
pattern as with OI and CN . This observation agrees with the simulation results in Figure
3.
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(d) Full nonlinear

Figure 3. True and Estimated Orbits with Range-only Measurements

With angles-only measurements, the simulation results are illustrated in Figure 4 and
Table 3. Again, the observability changes greatly from the first order to second order and
from second order to third order dynamic models, while the estimation results of third order
and full nonlinear order models are almost indistinguishable.
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However, compared with the range-only results for the HCW model shown in Figure
3(a), the estimated orbits with angles-only measurements illustrated in Figure 4(a) are
shrunk and keep the shape of the true orbit instead of being disoriented. This is mainly
because of the incapability of EKF with angles-only measurement on capturing range in-
formation, which has been proposed by Woffiden and Geller [3] as a scalar ambiguity of
angles-only measurements based on the linear dynamics.
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Figure 4. True and Estimated Orbits with Angles-only Measurements

Table 3. Performance of EKF Based on Angles-only Measurements

OI CN eρ (m) eρ̇ (m/s) λmax(P) det(P)
1st 2.27× 10−16 5.24× 1017 4.27× 104 44.47 781.43 1.83× 10−9

2nd 1.75× 10−14 1.41× 1014 1.96× 102 1.95 136.51 2.48× 10−13

3rd 7.32× 10−10 3.85× 1010 3.52 0.035 42.735 2.27× 10−23

full 7.41× 10−10 3.62× 1010 2.81 0.029 38.729 3.40× 10−24
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5.2 Effects of Nonlinearities on the Observability of Different Configurations

In this section, we study how observability changes with different nonlinear filter models
through the variation of orbital element differences. The methodology is to vary a certain
orbit element difference and compare the improvement of OI and CN between adjacent
dynamic models (e.g. first and second order, second and third order, and third order and
full nonlinear).

Figure 5 illustrates the change in observability when varying inclination difference. Fig-
ures 5(a) and 5(b) are cases for range measurements, while Figures 5(c) and 5(d) are cases
for angle measurements. From these plots, we find that with increased inclination differ-
ence δi, the observability difference improves almost uniformly (indicated by the increasing
log OIj/OIi and log CNi/CNj , j > i ). This means that higher order nonlinearities grant
extra benefits when inclination difference is enlarged. Figure 6 and 7 also illustrate cases
for variation of mean anomaly differences and eccentricity differences. From the results,
the same conclusion can be drawn as with variation of inclination difference.
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Figure 5. Ratio Plots of OI and CN with Varying Inclination Difference
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Figure 6. Ratio Plots of OI and CN with Varying Mean Anomaly Difference

Figures 8 and 9 present the change of OI and CN for variation of inclination difference
with range-only and angles-only measurements separately. From these results, the OI and
CN of the third order model follow very closely to those of the full nonlinear model for
both range-only and angles-only measurements as the inclination difference δi increases.
With increasing inclination difference, the advantages of using higer order models become
more obvious, particularly for including second and third order terms.

However, the plots of the second order model drift away from the full nonlinear model,
meaning that the second order model cannot accurately capture all the properties of relative
orbital motion of the true model. With no surprise, the first order dynamic model gives the
worst performance among all the relative motion models because of its assumption of close
proximity on which the linearization is valid.

We also notice that there exists tuning point in Figures 8 and 9. For example, in Fig-
ure 8(a), the maximum value of OI appears between δi = 0.2◦ and δi = 0.8◦, and the
corresponding value of δi differs slightly between systems with different nonlinearities.
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Figure 7. Ratio Plots of OI and CN with Varying Eccentricity Difference
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Figure 8. Plots of OI and CN for Different Orders of Nonlinearities (Range-only)
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To explain this behavior, recall that OI measures the worst observability among all six
states in relative orbit estimation and the filter actually uses the change of range information
to decide the deputy’s orbit, i.e., the x, y, z coordinates of deputy in chief’s LVLH frame.
From ρ =

√
x2 + y2 + z2, we have δρ = ε

ρ
δε, where ε denotes x, y or z. Therefore, it is

clear that when ε is the smallest among all three coordinates, it will be the most insensitive
state regarding the change of range, and therefore the least observable state. From Figure
10, we can see that when δi < 0.3◦, the maximum scale in z direction is less than that in
x and y direction, making z coordinates least observable. However, when δi > 0.8◦, the
scale of z coordinates becomes the dominant, making x coordinates least observable. This
observation agrees with the occurrence of the maximum value of OI between δi = 0.2◦

and δi = 0.8◦. Furthermore, the slightly different peak values of δi come from the use of
dynamic models with different orders of nonlinearities.
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Figure 9. Plots of OI and CN for Different Orders of Nonlinearities (Angles-only)
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6.0 AMBIGUOUS ORBITS OF HCW MODEL WITH RANGE-ONLY MEASURE-
MENTS

6.1 Definition of Ambiguous Orbits

In the previous section, we get a glimpse of the weakness of the HCW-based EKF with
range-only measurements on relative orbit estimation in Figure 3(a). However, when exe-
cuting a series of simulations with HCW dynamic model, the estimated orbits converge to
several different orbits randomly.

First Case: True relative orbit. The results for the first case are shown in Figure 11.
From Figure 11(a), we can see that the estimated orbit follows fairly closely to the true
orbit. From Figure 11(b), even though the estimation error is still in the scale of 500 m, the
filter successfully keeps the estimated trajectory from diverging.
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Figure 11. First Case of Ambiguity Using HCW Based EKF

Second Case: Mirror ambiguous orbit. From Figure 12(a), the estimated orbit (blue
line) looks like a mirror image of the true orbit (red line), which indicates the two orbits
have same shape and size. Furthermore, in Figure 12 (b), (c) and (d), the in-plane xy motion
is described well by the estimated orbit, but the out-of-plane z motion is poorly estimated.

Third Case: Deformed ambiguous orbit. Figure 13 illustrates the trajectory of the true
orbit (red line) and the deformed estimated orbit (blue line). Compared with the true orbit,
the in-plane xy motion of the estimated orbit is reduced, and the out-of-plane z motion
is enlarged. It appears that the EKF with HCW dynamics overestimated the z motion to
compensate for the underestimated xy motion to meet the range requirements. Also, the
orientation of the estimated orbit is different from the true orbit.

For the following discussion, we will discuss the existence of these ambiguous orbits
and their effects on the performance of a filter. For convenience, we make the following
definition. An orbit is defined as an ambiguous orbit of the true orbit by range if it shares the
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Figure 12. Second Case of Ambiguity Using HCW Based EKF

same range history with the true orbit. Namely, ρ′(t) = ρ(t) for all t > 0, where ρ(t) and
ρ′(t) are the ranges of the true and ambiguous orbits at time t respectively. Furthermore, if
the ambiguous orbit conserves the size and shape of the true orbit then it is classified as a
mirror ambiguous orbit; otherwise, it is classified as a deformed ambiguous orbit.

To analyze the ambiguous relative orbits, we utilize the solution of the HCW equation  
(Eq. (2) expressed in terms of relative orbit elements (ROEs) [17],

x(t) = −ae
2

cos(β) + xd

y(t) = ae sin(β) + yd

z(t) = zm cos(ψ) (30)

where ae, xd, zm are constant and yd(t) = yd0− 3
2
nxdt, β(t) = β0 +nt and ψ(t) = ψ0 +nt

are time dependent. It is clear that (ae, zm, xd, yd0, β0, ψ0) are six constants that can be used
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Figure 13. Third Case of Ambiguity Using HCW Based EKF

to represent relative orbits. The square of range ρ at time t can be expressed as

ρ2(t) = x2(t) + y2(t) + z2(t)

=
5

8
a2e +

1

2
z2m + y2d0

+

[
−3

8
a2e cos(2β0) +

1

2
z2m cos(2ψ0)

]
cos(2nt)

+

[
3

8
a2e sin(2β0)−

1

2
z2m sin(2ψ0)

]
sin(2nt)

+2aeyd0 sin(β0) cos(nt) + 2aeyd0 cos(β0) sin(nt)

−3aexd sin(β0)nt cos(nt)− 3aexd cos(β0)nt sin(nt)

−3xdyd0nt+
9

4
x2dt

2 (31)

Since the nine basis functions in Eq. (31) are linearly independent, the following nine
identities must be satisfied for ρ′2(t) = ρ2(t) .
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5a2e + 4z2m + 8y2d0 = 5a′e
2

+ 4z′m
2

+ 8y′d0
2 (32)

3a2e cos(2β0)− 4z2m cos(2ψ0) = 3a′e
2

cos(2β′0)− 4z′m
2

cos(2ψ′0) (33)
3a2e sin(2β0)− 4z2m sin(2ψ0) = 3a′e

2
sin(2β′0)− 4z′m

2
sin(2ψ′0) (34)

aeyd0 sin(β0) = a′ey
′
d0 sin(β′0) (35)

aeyd0 cos(β0) = a′ey
′
d0 cos(β′0) (36)

aexd sin(β0) = a′ex
′
d sin(β′0) (37)

aexd cos(β0) = a′ex
′
d cos(β′0) (38)

xdyd0 = x′dy
′
d0 (39)

x2d = x′d
2 (40)

where the primed quantities correspond to the ambiguous orbit. It is noted that if the non-
drifting condition xd = 0 is satisfied, Eqs. (37-40) will vanish. In the following section, we
first discuss the ambiguity under the non-drifting condition (Eqs. (32-36)) and then check
the validity of the ambiguity once the non-drifting assumption is violated. First, however,
we observe that Eqs. (35) and (36) yield

|aeyd0| = |a′ey′d0| (41)

6.2 Mirror Ambiguous Orbits

A mirror ambiguous orbit must have the same magnitude of in-plane and out-of-plane
motion as the true orbit, i.e., |ae| = |a′e| and |zm| = |z′m|. Two cases are considered.

Case 1: aeyd0 = a′ey
′
d0.

This case yields either

a′e = ae (42)
y′d0 = yd0 (43)

or,

a′e = −ae (44)
y′d0 = −yd0 (45)

Substituting aeyd0 = a′ey
′
d0 into Eqs. (35) and (36), we obtain

β′0 = β0 , for β0 ∈ [0, 2π) (46)

Then substituting Eqs. (42-43) or (44-45) into Eq. (32) , we obtain z2m = z′m
2 yielding

z′m = zm (47)
z′m = −zm (48)
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Finally, with the substitution Eqs. (42-48) into Eq. (33), we have

ψ′0 = ψ0 (49)
ψ′0 = ψ0 + π (50)

for ψ ∈ [0, 2π). This yields eight non-unique possible combinations of the initial ROEs.

Case 2: aeyd0 = −a′ey′d0.
As in Case 1, this also yields eight non-unique initial ROE combinations.

These 16 cases contain redundancy in terms of initial Cartesian coordinates, because
the initial Cartesian coordinates uniquely determine an orbit, whereas ROEs do not. The
transformation from initial ROEs to initial Cartesian states [17] is

x0 = −ae
2

cos β0

y0 = ae sin β0 + yd0

z0 = zm cosψ0

ẋ0 =
nae
2

sin β0

ẏ0 = nae cos β0

ż0 = −nzm sinψ0 (51)

With the transformation in Eq (51), it can be shown that the total number of Cartesian
initial states that result in orbits with the same range history is four including the true orbit
and three mirror ambiguous orbits. Table 4 lists these orbits as (a), (b), (c) and (t) (which
stands for the true orbit). For the case of drifting orbit, it is easy to check that the foregoing
16 ROEs combinations in Case 1 and 2 also satisfy Eqs. (37-40). Therefore, the drifting
phenomenon does not exclude these three mirror ambiguous orbits.

Table 4. Types of Mirror Ambiguous Orbits in Initial Cartesian Coordinates

x′0 ẋ′0 y′0 ẏ′0 z′0 ż′0
(t) x0 ẋ0 y0 ẏ0 z0 ż0
(a) x0 ẋ0 y0 ẏ0 −z0 −ż0
(b) −x0 −ẋ0 −y0 −ẏ0 z0 ż0
(c) −x0 −ẋ0 −y0 −ẏ0 −z0 −ż0

To illustrate mirror ambiguous orbits graphically, one periodic true relative orbit under
HCW dynamics is chosen with initial condition shown in Table 5. Figure 14(a) illustrates
the three mirror ambiguous orbits along with the true relative orbit ( (t): red line , (a): blue
line, (b): green line, (c): black line). It is easy to see that the four orbits generate the same
range history ρ(t) due to the symmetry of the orbits. The y-z projection of the four orbits
shown in Figure 14(d) can easily distinguish different ambiguous orbits by the inclination
of the relative orbit with respect to the y-axis in the y-z plane (indicated by the slope of the
orbit in the y-z projection) and the offset in the y direction, i.e., yd0.
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Table 5. Initial Condition for True Relative Orbit

x0 (km) y0 (km) z0 (km) ẋ0 (m/s) ẏ0 (m/s) ż0 (m/s)
-35.51 12.45 0.065 0.66 −2nx0 39.43
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Figure 14. True Relative Orbit and Three Mirror Ambiguous Orbits

6.3 Deformed Ambiguous Orbits

Unlike a mirror ambiguous orbit, a deformed ambiguous orbit implies that the in-plane
and out-of-plane motion have different amplitudes than those of the true relative orbit, or
|a′e| 6= |ae| and |z′m| 6= |zm| because Eqs. (32-37) imply that a mismatch of the ambiguous
orbit’s in-plane and out-of-plane motion magnitude with those of the true relative orbit must
occur simultaneously. For a drifting relative orbit, from Eq. (40), we see that |xd| = |x′d|.
From Eqs. (37) and (38), we have β0 = β′0, |aexd| = |a′ex′d| and |ae| = |a′e|. Then
considering Eqs (32-36), it is easy to find that |zm| = |z′m| and |yd0| = |y′d0|. In fact, merely
by |ae| = |a′e| and |zm| = |z′m|, the existence of a deformed ambiguous orbit for the drifting
case is excluded.
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Without loss of generality, let us assume a′ey
′
d0 = aeyd0 from Eq. (41). Furthermore,

assume the ratio of in-plane scale of the deformed ambiguous orbit to the true orbit is k,
namely,

a′e = kae (52)

y′d0 =
1

k
yd0 (53)

Thus, from Eqs. (35) and (36) we have

β′0 = β0 , for β ∈ [0, 2π) (54)

Substituting Eqs. (52-53) into Eqs. (33) and (34), we have

4z′m
2

cos(2ψ′0) = 3(k2 − 1)a2e cos(2β) + 4z2m cos(2β) (55)
4z′m

2
sin(2ψ′0) = 3(k2 − 1)a2e sin(2β) + 4z2m sin(2β) (56)

Squaring both sides of Eqs. (55) and (56), adding them together and extracting the square
root results in

4z′m
2

=
√

9(k2 − 1)2a4e + 16z4m + 24(k2 − 1)a2ez
2
m cos(2β0 − 2ψ0) (57)

Finally, substituting Eqs. (52-53) and (57) into Eq. (32), we end up with an equation only
in terms of k, i.e.,

5a2e + 4z2m + 8y2d0 = 5k2a2e +
8

k2
y2d0 +

√
9(k2 − 1)2ae

4 + 16z4m + 24(k2 − 1)ae
2z2m cos(2β0 − 2ψ0) (58)

Defining K = k2 > 0, C = 5a2e + 4z2m + 8y2d0, this can be simplified as

C − 5Ka2e −
8

K
y2d0 =

√
9(K − 1)2a4e + 16z4m + 24(K − 1)a2ez

2
m cos(2β0 − 2ψ0) (59)

Squaring both sides of Eq. (59) we obtain(
C − 5Ka2e −

8

K
y2d0

)2

= 9(K − 1)2a4e + 16z4m + 24(K − 1)a2ez
2
m cos(2β0 − 2ψ0) (60)

Finally a fourth order polynomial can be derived as

16a4eK
4 +

[
18a4e − 24a2ez

2
m cos(2β0 − 2ψ0)− 10Ca2e

]
K3 (61)

+
[
−9a4e + 24a2ez

2
m cos(2β0 − 2ψ0) + 80a2ey

2
d0 − 16z4m + C2

]
K2 − 16Cy2d0K + 64y4d0 = 0

Note that in deriving Eq. (60) from Eq. (59) the solution set ofK is increased by “squaring”
both sides of Eq. (60). We return to this issue later when we discuss the existence of
solutions for K. For now, it is obvious that Eq. (61) is a quartic equation and admits four
roots. However, not all the roots are valid, because a valid K for deformed ambiguous
orbits must satisfy the following conditions.
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K > 0 (62)
K 6= 1 (63)

In order to check the solution set of Eq. (61), we test it with a numerical example with
initial conditions illustrated in Table 5. If we transform these initials conditions into ROEs
and substitute them into Eq. (61), the resulting fourth order polynomial is given by

K4 − 2.4336K3 + 1.629K2 − 0.199K + 0.004 = 0 (64)

Eq. (64) has four real and positive solutions
K1

K2

K3

K4

 =


1.283681667559196
1.000000000000000
0.125488302965344
0.024439677975557

 (65)

From the solution set, we discuss the following values separately:

1. K2 = 1, i.e., k2 = ±1 denotes the true relative orbit and corresponding mirror
ambiguous orbits.

2. K3 = 0.125 . . . , denotes a valid deformed ambiguous orbit. With K = K3 and
k = ±

√
K3, we obtain the ambiguous ROEs by following Eqs. (52-57) and (32- 37). Then

transforming these ambiguous ROEs back to initial ambiguous Cartesian coordinates, we
simulate the ambiguous orbit using HCW dynamics as shown in Figure 15. From Figures
15(b) and 15(c), we see that the in-plane motion amplitude of the ambiguous orbit is de-
creased compared to that of the true relative orbit while the out-of-plane motion amplitude
of the ambiguous orbit is enlarged to compensate the decreased in-plane amplitude and thus
yield an identical range history. From our previous analysis on mirror ambiguous orbits, it
is seen that whenever one deformed ambiguous orbit is found, there exist three other orbits
“mirrored” to this deformed ambiguous orbit generating the same range history. In other
words, one valid K 6= 1 implies four deformed ambiguous orbits. Figure 15 illustrates
the true relative orbit and these four deformed ambiguous orbits. ( In fact, two of these
deformed ambiguous orbits are corresponding to the second case a′ey

′
d0 = −aeyd0 from Eq.

(41).)

3. K1 and K4 are not valid solutions for an ambiguous orbit and are called fake solutions
in this paper. The reason that these two K values are not valid ambiguous solutions, as was
mentioned earlier, is that the solution set of K is increased by “squaring” both sides of Eq.
(59). To explain this, let us define

f = C − 5Ka2e −
8

K
y2d0 (66)

and

g =
√

9(K − 1)2a4e + 16z4m + 24(K − 1)a2ez
2
m cos(2β0 − 2ψ0) (67)
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Figure 15. True Relative Orbit and Four Deformed Ambiguous Orbits

Also, we define

Ptrue = f − g (68)
Pfake = f + g (69)
Pcom = K2(f 2 − g2) (70)

It is easy to see that Ptrue = 0 is equivalent to Eq. (59), Pfake = 0 is the surplus or “fake”
polynomial equation generated by the squaring operation, and Pcom = 0 is equivalent to
Eq. (61). Figure 16 illustrates these three polynomials with respect to K. As expected,
Pfake has two intersections with Pcom at the two fake solutions K1 and K4, while Ptrue has
an additional two intersections with Pcom at K2 and K3. In other words, both Pfake = 0
and Ptrue = 0 contribute two roots each to Pcom = 0 and only the roots from Ptrue = 0
are physically valid for our problem. With these considerations, it is clear that there are
at most two real roots of physical interest and one of them is K = 1. Therefore, we can
conclude that for any closed relative orbit, there exists at most one validK 6= 1 representing
deformed ambiguous orbits.
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Figure 16. Three Polynomials and Corresponding Solutions

6.4 Existence of Deformed Ambiguous Orbits

Recall that the essence of this problem is to decide the existence of a valid K > 0,
K 6= 1 in Eq. (59). From the previous analysis, we know that this equation has two
solutions (because Pcom = 0 has four solutions in total in the context of complex solution).
Now we discuss the existence of this ambiguous K. For convenience, define a function
h(K) as

h(K) = 5Ka2e +
8

K
y2d0 +

√
9(K − 1)2ae

4 + 16z4m + 24(K − 1)ae
2z2m cos(2β0 − 2ψ0)  (71)

Therefore, Eq. (59) is equivalent to “ h(K) = C ”. It is obvious that h(K) has the following
properties:

1. h(K) = C has two solutions in the complex space.

2. h(K) is a continuous function for K ∈ (0,∞).

3. K = 1 is one solution for h(K) = C.

4. h(K)→∞ as K → 0.

5. h(K)→∞ as K →∞.

With these five properties, we can qualitatively plot h(K) as Figure 17. From these sub-
figures, if h(K) transversely crosses C as shown in Figures 17(a) and 17(b), then we can
guarantee h(K) = C has one deformed ambiguous solution at K = K ′. However, it is
possible that h(K) is tangent to C at K = 1 as shown in Figure 17(c) where K = 1 is a
double root and thus no deformed ambiguous K exists. Therefore, we need to discuss the
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(a) Transverse case 1 (b) Transverse case 2

(c) Tangent case

Figure 17. Cases of Transverse and Tangent Intersections for h(K) and C

condition for the tangent case. If h(K) is tangent to C at K = 1, it simply means that the
derivative of h(K) at the tangent point equals to 0, i.e.,

dh

dK

∣∣∣
K=1

=
5

4
a2e − 2y2d0 +

3

4
a2e cos(2β0 − 2ψ0) = 0 (72)

Note that the condition is independent of zm. To test the condition for no deformed am-
biguous orbits in Eq. (72) , we set

yd0 =
ae
2

√
5

2
+

3

2
cos(2β0 − 2ψ0) = 3.551× 104m (73)

in the numerical simulation while keeping the remaining ROEs the same as before in Table
5. With these initial conditions, the quartic equation for K is

K4 − 3.527K3 + 4.303K2 − 2.027K + 0.250 = 0 (74)
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Eq. (74) has four real and positive solutions
K1

K2

K3

K4

 =


1.340247349090013
1.000000010460630
0.999999989539370
0.186546575287586

 (75)

It is easy to see that K2 ≈ K3 ≈ 1 is the repeated root. The same conclusion can also be
drawn from Figure 18.
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Figure 18. Illustration of Tangent Condition

6.5 Categorization of Ambiguous Relative Orbits

As discussed earlier, we can categorize the ambiguous orbits in terms of initial Cartesian
coordinates. However, this criterion is not convenient when categorizing the various types
of ambiguous orbits. Therefore, this paper adopts the y-z plane projection to distinguish
these orbits. Two parameters pertaining to the y-z projection are used:

1. yd0, the offset in y direction.
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2. s, the slope of the semi-major axis of the projected ellipse in the y-z plane as shown
in Figure 19. With the non-drifting solution, it can be shown that

s =
a2e − z2m −

√
a44 − 2a2ez

2
m + z4m + 4a2ez

2
m sin2(β0 − ψ0)

2aezm sin(β0 − ψ0)
(76)

The categorization of the various types of ambiguous orbits in terms of yd0 and s is shown
in Table 6 with correlation between Cartesian initial coordinates and y-z projection. Also
note that we require sign (ỹd0) = sign (yd0) and sign (s̃) = sign (s) to decide the primary
deformed ambiguous type (d), where ˜( ) denotes deformed values.

Figure 19. Illustration of Offset yd0 and Slope s in y-z Projection

Table 6. Categorization of Ambiguous Orbits

Types Cartesian coords. y-z projection
(t) (x0, y0, z0, ẋ0, ẏ0, ż0) yd0 s
(a) (x0, y0,−z0, ẋ0, ẏ0,−ż0) yd0 −s
(b) (−x0,−y0, z0,−ẋ0,−ẏ0, ż0) −yd0 −s
(c) − (x0, y0, z0, ẋ0, ẏ0, ż0) −yd0 s

(d) (x̃0, ỹ0, z̃0, ˙̃x0, ˙̃y0, ˙̃z0) ỹd0 s̃

(e) (x̃0, ỹ0,−z̃0, ˙̃x0, ˙̃y0,− ˙̃z0) ỹd0 −s̃
(f ) (−x̃0,−ỹ0, z̃0,− ˙̃x0,− ˙̃y0, ˙̃z0) −ỹd0 −s̃
(g) − (x̃0, ỹ0, z̃0, ˙̃x0, ˙̃y0, ˙̃z0) −ỹd0 s̃
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6.6 Numerical Results for Ambiguity Analysis

In the following discussion, we show numerical examples of convergence of a sequen-
tial filter to ambiguous relative orbits by applying drifting mirror, non-drifting mirror and
deformed ambiguous initial conditions to an EKF with HCW dynamics. For both drifting
and non-drifting examples, the chief orbit is chosen as a circular orbit with a radius of 7100
km, and the orbital element differences are shown in Table 7.

The measurement covariance matrix is assumed to be R = 202 m2 and the sample time
is ∆t = 10 seconds. The initial states guess for the EKF is X̄0 = (x̄0, ȳ0, z̄0, ¯̇x0, ¯̇y0, ¯̇z0)

T =
(x′0, y

′
0, z
′
0, ẋ
′
0, ẏ
′
0, ż
′
0)
T
i , where i = (t), (a), . . . , (f) in Table 6, and the true initial condition

X0 = (x0, y0, z0, ẋ0, ẏ0, ż0)
T is calculated from orbital element differences in Table 7.

We note that the range measurements were generated from integrating nonlinear two-body
equations of motion, so that the range history does not exactly match that generated from
HCW dynamics. Figure 20 illustrates the drifting estimated orbits with type (t), type (a),
type (b) and type (c) initial conditions, in which the red line denotes the true relative orbit
and blue line denotes estimated orbits.
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Figure 20. Drifting True and Mirror Ambiguous Orbits in an EKF Simulation
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Figure 20(b) shows the inversion of the z-motion for type (a) orbit, Figure 20(c) shows
the inversion of the xy-motion for type (b) orbit, and Figure 20(d) shows the inversion of
the xyz-motion for type (c) orbit. From these figures, it is clear that the filter can still arrive
at ambiguous orbits despite the fact that their range history is different than that of the
measurements.

Table 7. Orbital Element Differences for Drifting and Non-drifting Scenarios

δa δe δi δΩ δω δM0

Drifting 5 km 0.005 0.3◦ 0◦ 0◦ 0.1◦

Non-drifting 0 km 0.005 0.3◦ 0◦ 0◦ 0.1◦

For the closed orbit, Figure 21 shows the results of applying the type (c) mirror am-
biguous condition in the EKF. From the numerical results, the filter reproduces the type
(c) mirror ambiguous orbit except with a small disturbance at the beginning because of the
mismatch in measurement model (full nonlinear) and filter dynamic model (HCW), process
noise and measurement noise. It is worthy to mention that we also found cases where the
EKF filter converged to smooth mirror ambiguous orbits of type (a) and (b).
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Figure 21. Type (c) Mirror Ambiguous Orbit in an EKF Simulation
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Also, in order to check whether the filter will converge to a deformed ambiguous orbit,
we applied the type (e) ambiguous initial condition to an EKF. Figure 22 illustrates the
corresponding results. From these plots, the estimated orbit does converge to the “pre-
designed” deformed ambiguous orbit after a certain initial oscillation.
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Figure 22. Type (e) Deformed Ambiguous Orbit in an EKF Simulation

Some general results on the increased observability obtained by using higher order non-
linearities in the EKF resulting from the Taylor expansion about the chief orbit have been
shown. Therefore, we conduct a comprehensive set of numerical simulations to illustrate
the ability of quadratic, cubic and full two-body nonlinearities in the filter model to avoid
or resist the occurrence of ambiguous orbits for range-only measurements. We consider the
effects of varying three independent characteristics:

1. Nonlinear order of dynamic model used in the EKF. Again four different dynamic
models (first , second, third order and full nonlinear dynamic models) are applied in
the EKF as defined earlier.
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2. Size of the relative orbit. Since the accuracy of describing relative motion using a
lower order dynamic model decreases as the relative separation is enlarged, three
configuration scenarios are taken into account as shown in Table 8, where ρavg is the
average relative range over the course of one orbit period.

Table 8. Orbital element Differences for Three Simulation Scenarios

relative orbit size δa δΩ δω δe δi δM0 ρavg
small 0 0 0 0.005 0.3◦ 0.1◦ 60 km

medium 0 0 0 0.025 1.5◦ 0.5◦ 300 km
large 0 0 0 0.05 3◦ 1◦ 600 km

3. Geometric variation of the initial guess given to the EKF. In order to keep the shape
and size of the relative orbit unchanged for one set of variations, we alter the initial
guess for the EKF geometrically using ROEs. To achieve this purpose, ae and zm
must remain constant and yd0, β0, and ψ0 are manipulated to fulfill the variation
of initial condition. For example, from Eq. (51) and Eq. (76), varying from type
(t) to type (c) mirror ambiguous orbit, we need to keep the phase difference β0 −
ψ0 constant for slope. Meanwhile, to reverse the sign of in-plane and out-of-plane
motion, we need to vary the phase angles from [β0, ψ0] to [β0 + π, ψ0 + π] and offset
in y direction from yd0 to −yd0. Numerically, the initial guess in the EKF is set as
[β̄0, ψ̄0, ȳd0] = [β0, ψ0, yd0] + γ[π, π,−2yd0], where γ is the variation coefficient with
increment of 0.01. The variation strategy is shown in Figure 23 with the 3D view and
y-z projection.

The results of this comprehensive numerical investigation are shown and discussed in
the following section.
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Figure 23. Relative Orbits Resulting from Variation of Initial Conditions
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7.0 RESULTS AND DISCUSSION

The first set of simulations explores the variation from type (t) to type (c) mirror ambigu-
ous orbit for the small relative orbit scenario. The numerical results are shown in Figure
24, which is called a “step plot” and in which the horizontal lines indicate convergence and
the slant lines denote non-convergence. ( Note the filter is regarded as converged to type
(i) orbit if the resulting yd0 and s of the estimated orbit are within 90% of those of type
(i)). From this figure, it is seen that the filter with HCW dynamic model diverges earliest
at γ = .26, the second order model diverges next at γ = .33 and lastly the third order and
full nonlinear models at γ ≈ .53. This means that higher order dynamic models have larger
basins of attraction to the true orbit compared with lower order dynamic models, which
converge more easily to ambiguous orbits.
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Figure 24. Convergence of EKF Simulations for Small Relative Orbit Scenario

Another interesting observation from Figure 24 is that instead of only converging to type
(t) and (c) orbits, which are the endpoints of the variation, the filter also converges to type
(d), (a), (b) and (f ) ambiguous orbits. The value of γ where the EKF switches from conver-
gence to one ambiguous orbit to convergence to the "next" ambiguous orbit, increases for
higher order nonlinear models. In other words, the use of higher order nonlinear models
tend to delay or resist the appearance of ambiguous orbits in the EKF.

The step plots for the medium and large scenarios are shown in Figure 25. Figure 25(a)
and 25(b) are very similar to Figure 24 in terms of the resistance of the higher order non-
linear models to ambiguous orbits except that for each order model, the range of γ over
which the EKF converges to a particular ambiguous relative orbit has changed. To observe
more carefully the effects of large separation, Figures 26 and 27 show the step plots for the
HCW and full nonlinear models with medium and large configuration scenarios.
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Figure 25. Convergence of EKF for Medium and Large Relative Orbit Scenarios

From Figure 26, for the HCW dynamic model, the divergence from the true orbit be-
comes faster when switching from small to medium, and also from medium to large rela-
tive orbit scenarios. This result agrees with our expectation because the range profile in the
EKF is generated by the full nonlinear dynamic model and the HCW model has less ability
to track the real motion and real range.
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Figure 26. Convergence of EKF for HCW Model with Three Relative Orbit Scenarios

On the contrary, Figure 27 shows that the filter diverges later when switching from
smaller to larger separation scenarios for the full nonlinear model. The reason is that even
though the ambiguous orbits perfectly exist for HCW dynamics, they are not exactly suit-
able for the higher order or full nonlinear dynamics. In other words, a full nonlinear model
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can never generate the exact same range history of the true orbit from a different orbit for
which there always exist errors in range. Therefore, the full nonlinear model can utilize
this mismatch in range to distinguish and discard the ambiguous orbit. The same conclu-
sion could also be drawn by performing the same analysis with the second and third order
models in the EKF. Results would look similar to the plots in Figures 26 and 27.

In total, the use of higher order nonlinear models in the EKF can resist the tendency to
converge to an ambiguous orbit. This resistive effect becomes more obvious when the rel-
ative separation of the formation configuration is enlarged. It is noted that we also studied
other directions of variation such as (t)→(f ), (t)→(a) and (t)→(b) , and this conclusion
holds for these variations as well.
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Figure 27. Convergence of EKF for Full Nonlinear Model with Three Scenarios
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8.0 CONCLUSIONS

In this report, the observability of relative orbit estimation for circular chief orbits with
different orders of nonlinearities in the filter model was studied. Using the Lie derivative
method, analytical observability conditions were obtained for relative orbit models with
different orders of nonlinearities. The benefits of using higher order dynamic models were
manifested both by the Lie derivative method and by the numerical analysis using quantita-
tive measures of observability obtained from the observability Gramian, covariance matrix,
and estimation error RMS.

To explain the reason for the appearance of ambiguous orbits in a Hill-Clohessy-Wiltshire
based EKF, the ambiguous relative orbits generated from range-only measurements was an-
alyzed both by analytical derivation and numerical simulation. Two categories of ambigu-
ous orbits were shown to exist: mirror ambiguous orbits and deformed ambiguous orbits,
and conclusions were drawn regarding the types and numbers of ambiguous orbits. Specifi-
cally, it is shown that: 1) For non-drifting relative orbits, three mirror ambiguous orbits and
four deformed ambiguous orbits exist. The deformed ambiguous orbits disappear when the
tangent condition is satisfied. 2) For drifting relative orbits, only three mirror ambiguous
orbits exist. These facts are a consequence of the global unobservability of an estimation
strategy based on range-only measurements and HCW dynamics. Also when used as a
dynamic model in a filter the higher order nonlinear models of relative motion were shown
to have the potential to resist the tendency of an extended Kalman filter to converge to an
ambiguous relative orbit, particularly for large separation relative orbits.
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LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS

Local Vertical Local HorizontalLVLH 
EKF 
OI
CN
RMS 
ROE

Extended Kalman Filter 
Observability Index 
Estimation Condition Number 
Root Mean Square
Relative Orbital Elements

Symbol Description
µ Gravitational Parameter of the Earth
n Mean Motion of Chief Orbit
rc Orbital Radius of Chief Orbit
ω Angular Velocity of Chief Orbit
vc Velocity of Chief Spacecraft
x, y, z Cartesian Position Coordinates in Chief’s LVLH Frame
ẋ, ẏ, ż Cartesian Velocity Coordinates in Chief’s LVLH Frame
ρ Range Vector From Chief to Deputy
X Deputy’s Position and Velocity
rd Position of Deputy Spacecraft Relative to Center of the Earth
Fi Vector filed of ith Order Dynamic Model of Relative Motion
Γi ith Order Nonlinear Terms
vrel Velocity of Deputy Relative to the Chief
λ In-plane Bearing Angle
φ Out-of-plane Bearing Angle
Wc Gramian for Continuous System
Wd Gramian for Discrete System
Φ State Transition Matrix
H Jacobian Matrix of the Output Relation
σ Singular Value of a Matrix
a Semi-major Axis of an Orbit
e Eccentricity of an Orbit
i Inclination of an Orbit
Ω Argument of Ascending Node of an Orbit
ω Argument of Periapsis of an Orbit
M0 Initial Mean Anomaly of an Orbit
P0 Initial Covariance Matrix
R Measurement Covariance Matrix
∆t Sampling Time Interval
eρ Estimation Position Error
ėρ Estimation Velocity Error
ae Magnitude of In-plane Motion
zm Magnitude of Out-of-plane Motion
xd Offset in x Direction
yd Offset in y Direction
β In-plane Phase Angle
ψ Out-of-plane Phase Angle
s Slope of the Semi-major Axis of the Projected Ellipse in y-z Plane
γ Geometric Variation Coefficient
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